

INTRODUCTION

- 1. We provide SD7K, the only large-scale realworld dataset consisting of high-resolution shadow and the associated shadow-free images under various illumination conditions currently.
- 2. We propose FSENet, a frequency-aware netment shadows.

VISUAL RESULT

Sun Light

Figure 2: Visual comparison on high-resolution of different methods for image enhancement on the SD7K dataset.

REFERENCES

[1] Jie Liang, Hui Zeng, and Lei Zhang. Highresolution photorealistic image translation in realtime: A laplacian pyramid translation network. In *CVPR*, 2021.

#2758 HIGH-RESOLUTION DOCUMENT SHADOW REMOVAL VIA A LARGE-SCALE REAL-WORLD DATASET AND A FREQUENCY-AWARE SHADOW ERASING NET ZINUO LI¹, XUHANG CHEN¹, CHI-MAN PUN¹ AND XIAODONG CUN¹ ¹UNIVERSITY OF MACAU DATA DISTRUBUTION METHODOLOGY AND QUANTITATIVE RESULT Data distribution of SD7K and quantitative comparison across all document shadow datasets: SD7K Data Distribution **Ouantitative Comparison Across Different**

CONCLUSION

Picture

In this paper, we tackle the important problem of removing shadows from high-resolution documents. We gather a high-resolution dataset SD7K, which is comprised of over 7000 triplets of real-world document images with distinct characteristics under various illumination conditions. In the meanwhile, we propose FSENet to remove shadows in higher resolution via frequency decomposition.

In order to enable multi-frequency optimization, we use a Laplacian pyramid to divide the original image into two high-frequency areas (textures) and one low-frequency area (color), different frequency components are refined by distinct modules. The low frequency is sent to Dimension-Aware Transformer (DAT) and Deep Feature Extraction (DFE), and the high-frequencies are sent to a series of carefully designed convolution with Texture Recover Module (TRM).

	SD7K												Param
od	512×512				1024×1024				2462×3699 (Full Size)				(M)
	PSNR↑	SSIM↑	RMSE↓	Time(s) \downarrow	PSNR↑	SSIM↑	RMSE↓	Time(s) \downarrow	PSNR↑	SSIM↑	RMSE↓	Time(s) \downarrow	
	15.95	0.89	44.09	N/A	15.95	0.90	44.09	N/A	15.94	0.91	44.14	N/A	N/A
	15.31	0.82	47.88	> 10	15.31	0.85	47.88	> 30	15.29	0.86	47.95	> 60	N/A
	13.32	0.68	67.48	> 10	13.32	0.71	67.48	> 30	13.26	0.74	68.07	> 60	N/A
	9.89	0.71	86.35	> 10	9.90	0.76	86.35	> 30	9.88	0.79	86.46	> 60	N/A
	19.86	0.92	26.76	> 5	19.86	0.93	26.76	> 10	19.82	0.92	26.86	> 30	N/A
GAN	24.82	0.87	15.43	0.96	24.82	0.85	15.43	2.07	24.67	0.86	15.72	7.59	28.29
N	25.61	0.85	14.27	0.21	25.60*	0.83*	14.27*	N/A	25.42*	0.85*	14.60*	N/A	27.82
let	24.18	0.95	16.83	0.11	23.00*	0.90*	19.14*	N/A	22.94*	0.90*	19.28*	N/A	391.10
R-Net	21.50	0.90	30.52	0.85	19.81*	0.85*	33.03*	N/A	19.74*	0.86*	33.18*	N/A	29.44
wFormer	23.71	0.90	17.54	0.15	22.69*	0.84*	19.65*	N/A	22.64*	0.87*	19.79*	N/A	11.35
et	24.86	0.80	15.59	0.18	24.84*	0.79*	15.67*	N/A	24.70*	0.83*	15.96*	N/A	2.11
	28.69	0.97	9.98	0.24	28.68	0.97	9.98	0.75	28.67	0.96	10.00	7.93	29.34

metrics, yet its speed does not lag far behind.

CONTACT INFORMATION

Web https://www.cis.um.edu.mo/ cmpun/ Email cmpun@umac.mo **Phone** +853 8822 4369

